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Analysis of Gaussian beam and Bessel beam driven laser accelerators
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This paper presents a comparison of Gaussian and Bessel beam driven laser accelerators. The emphasis is on
the vacuum beat wave accelera(@BWA ), employing two laser beams of differing wavelengths to impart a
net acceleration to particles. Generation of Bessel beams by means of circular slits, holographic optical
elements, and axicons is outlined and the image space fields are determined by making use of Huygens’
principle. Bessel beams—like Gaussian beams—experience a Guoy phase shift in the vicinity of a focal region,
resulting in a phase velocity that exceexishe speed of lighin vacua In the VBWA, by appropriate choice
of parameters, the Guoy phases of the laser beams cancel out and the beat wave phase velodityTéguals
particle energy gain and beam quality are determined by making use of an analytical model as well as
simulations. The analytical model—including thex B interaction—predicts that for equal laser powers
Gaussian and Bessel beams lead to identical energy gains. However, three-dimensional, finite-emittance simu-
lations, allowing for detuning, transverse displacements, and including all the electromagnetic field compo-
nents, show that the energy gain of a Gaussian beam driven VBWA exceeds that of a Bessel beam driven
VBWA by a factor of 2—3. The particle beam emerging from the interaction is azimuthally symmetric and
collimated, with a relatively small angular divergence. A table summarizing the ratios of final energies,
acceleration lengths, and gradients for a number of acceleration mechanisms is given.
[S1063-651%9902510-9

PACS numbes): 41.75.Lx, 42.62-b

I. INTRODUCTION leleq/(Mcw) = 4.8\ wg) PY2(TW), (2

Attainment of the high intensities necessary for laser\yhere e and m are the electronic charge and mass,
driven acceleratorl -21] requires that the beam be focused = 2 ;¢c/\ is the frequencyg is the speed of lighin vacuq
down to a waist that is a few wavelengths in diameter. For gndp is the power, expressed in terawatts. The electromag-
highly focused beam, the distance over which this high inetic field associated with a laser beam is predominantly
tensity can be sustained is relatively short due to transversgansverse. There is, in addition, a smaller longitudinal field
spreading. The free-space scale length for diffraction of &omponent. The longitudinal field may be estimated from the
collimated Gaussian beam, depicted in Fig. 1, is the Rayleigicoulomb gauge condition dE=0, or 9E,/dz=—V , -E, ,

range[22]: where the subscriptg and L denote the longitudinal and
transverse components, respectively. In order of magnitude,
Zr=TWEIN, (1)  the amplitudes, of the axial component of the field is given
by
wherewy is the waist(i.e., minimum spot sizeof the beam, £,=O0(eo/(kwp)). 3

d=tan Y(\/mw) is the asymptotic divergence angle, and

@s the wavelength. The intensity may _be increased by focus,’vIaking use of Eqs(1)—(3), W= ,Zz—which is an estimate
ing the beam dpwn to a smaller waist. This, howeyer, re'f?r the change in particle energy—is a function of the laser
duces the Rayleigh range and hence the beam remains neaﬁgwer only. In other words, for a given powaiis the same

collimated over a shorter distance in the Fresnel regiear . :
field), while in the Fraunhofer regioffar field) the beam independently of whether the laser beam is focused down to

diverges with a larger angle. Thus the interaction length may
be reduced if a laser beam with a smaller waist is employed.

This trade-off between intensity and interaction length
can be illustrated by an example. For a circularly polarized
Gaussian laser beam, the amplitugieof the transverse com-
ponent of the electric field is expressible as

*Permanent address: Icarus Research, Inc., P.O. Box 30780, Be-

thesda, MD 20824-0780. FIG. 1. Free-space diffraction of Gaussian beam. Waishi-
"Present address: Plasma Physics Division, Naval Research Labmum spot sizeis denoted bywv, and ¢ is asymptotic beam diver-
ratory, Washington, D.C. 20375-5346. gence angle.
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high intensity(and short interaction lengttor only slightly ~ whereE(x,y,z,t) represents a transverse component of the
focused(with a long interaction length electric field at poin{x,y,2 in space and at time The field
It is natural to ask what the scaling @l is for other mode can be expressed as
profiles or acceleration mechanisms and if, for comparable
situations W can be increased. A Gaussian beam, focused by E(x,y,zt)=3%e(X,y,z,t)expi Yp)tc.c., (4)
means of spherical optical elements, is the most common
form of radiation from a laser cavit}22]. A Bessel beam wheree is the envelope and
[23-35 is more exotic and can be generated by a circular

slit, a holographic optical element, or an axicon. A Bessel Up= Bz~ ot %)
beam forms a “line” image and thus might appear to have .
advantages as regards the interaction distance. is the plane-wave phase apts the axial wave number. At

There are two insidious effects associated with diffrac-this stage one can proceed in various ways depending on the
tion. First, there is a fall-off irintensitywith distance. The form of .
second manifestation of diffraction is more subtle. On pass-

ing through a focal region, a laser beam accumulates an axial A. Gaussian beam modes
phase shift. The extra phase—called the Guoy phase— . . . . .
effectively increases the phase velocity beyond the If Bis chosen to satisfy the free-space dispersion relation

vacuum speed of light, and detunes the wave-particle inter-

action. In Ref[35], Gaussian and Bessel beams were com-

pared for a number of high-gradient acceleration mecha- . .
. ; . . ne can assume that the envelope is a slowly varying func-

nisms, assuming that the wave-particle synghromsm could bt%|on of coordinates and time, in €vhich case Zubst)i(cut?on of

maintained by some means. For example, it was shown th% (4) into the wave e uatioh leads to

for a vacuum beat wave accelerattBWA )—wherein net 9. q

B=wlc, (6)

acceleration is imparted by the beat wave of two laser beams wld 19 21 P
of differing wavelengths—the energy gain of the two beam Vi42i—| =+ —) +——=——=—=3|e=0, (7
profiles is comparable. cloz cdtj 9z° ¢ ot

The purpose of this paper is to analyze the VBWA . . .
[11,13 process in detail, supplementing the analytical WorkwhereVl is the transverse gradient operator. Effecting the
change of variables

in Ref.[35] with full-scale particle simulations, and compar-
ing the energy gain and particle beam quality for Gaussian

and Bessel beams. The scalar wave equation is discussed in m=zeh f=z ®
Secs. Il and IIl and used to obtain expressions for the imaggq_ (7) reduces to

space fields for Gaussian and Bessel beams. Experimental

configurations for forming Bessel beams, such as axicons 5 52

w
and zone plategholograms, are outlined in Sec. IV. Expres- V2 +2i c + 25_&4 + i e=0. (9)
sions for the amplitudes and phase shifts are derived. The 7

inventive step in the VBWA is that the Guoy phase of the |t the tynical scale length associated with the transverse
two !aser beams cancels ogt by proper ch0|c¢ of parametersariation of the field iswo, it follows that V|, = O(1Aw,).
leading to a beat wave with a phase velocity equatio aqquming the axial scale length associated with the laser

allowing n_ear-syn_chro_nism with particles._ Assuming a SYN1yise to b, the terms in Eq(9) are seen to have the fol-
chronous interaction, in Sec. V an analytical expression fofowing orders of magnitude:

the energy gain is derived for the Bessel beam driven

VBWA using a compound axicon and compared with the szO(rr/)\ZR),
corresponding expression using a Gaussian beam. The

model—neglecting transverse displacements of particles and (w/C)dl 3¢ =0(2mINZg)
including thevX B interaction—predicts equal energy gains ’
for the two configurations. Section VI presents the results of Placan=0(1NZg),

full-scale simulation studies, employing prescribed laser
fields and finite-emittance particle beams, to compare the
energy gain in the two cases. The simulations show that in

practice the energy gain for the Bessel beam driven Vacuui,e standard paraxial approximation corresponds to the or-
beat wave accelerator is a factor 2—3 less than that for Beri

. : ! . . erin
Gaussian beam driven configuration. Based on scaling argu- g

9%190%=0(11Z3).

ments, in Sec. VIl the ratios of the energy gains, acceleration Za, 1>\ (10)
lengths, and gradients for a number of laser-driven accelera- ’ ’
tion mechanisms are summarized in tabular form. from which Eq.(9) reduces to
Il. SOLUTIONS OF SCALAR WAVE EQUATION ® J
S V2+2i——)8:0. 11
The scalar wave equation is given by L c dl (12)

A well-known solution to Eq(11) is the fundamental Gauss-

, 1 _

C2at?
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o(1) = el expl — 2w exili (o + i+ pe)], (12) oot 1o

whereJ, is the ordinary Bessel function of the first kind of
wherer = (x2+y?)¥2is the radius in cylindrical coordinates, order zero. The ideal, beam has a sharp intensity peak on

gg and ¢, are constants, axis with an infinitely long depth of field of the focal region
and thus may be suitable in applications such as precision
W(z) =wo(1+2%/Z3)Y? (13)  alignment. It should be noted that an ideal Bessel beam has
_ ) an infinite number of side lobes around the central peak and,
is the spot size at, importantly, each lobe carries nearly as much power as the
U (2) = (W) 2l Zg (14) central peak. In any experimental setup, only a clipped

Bessel beam can be formed and the central lobe is subject to

diffractive spreading, with a finite focal depf24,28-30Q.

Nonetheless, the utility of Bessel beams in applications such
Yo(z)=—tan Y(z/Zg) (15)  as laser-driven acceleration is of interest. In the following

sections, the particular example of the vacuum beat wave

is the axial phase shift, due to the Guoy effect, which isaccelerator is considered in detail.

present whenever a beam passes through a fi@2]s The

fundamental and higher-order Gaussian beam modes are Il. SCALAR DIFFRACTION THEORY

free-space eigenfunctions of the paraxial wave equation and

their properties are well known. In particular, a collimated To determine the energy gain when a particle interacts

Gaussian beam forms a focus with a minimum spot sizavith a laser beam, it is necessary to have expressions for the

(waish w, and as it passes through the focus the phasé€lectromagnetic fields as functions of space and time. Equa-

changes byr over a distance on the order @f. Optical ~ tions(12)—(15) are the necessary forms for a Gaussian beam.

elements with curved surfaces play a special role in théince the corresponding expressions for Bessel beams are

propagation of Gaussian beams or in confining Gaussiafot well known, the appropriate formulas are derived in this

beams in optical resonators. When the curvature of thesgection.

elements(e.g., mirrors or lensgss matched to the wave-

front curvature of the beam, each element will reflect or A. Huygens-Fresnel formulation

propagate the beam with little distortion. By choosing the

transverse size of the optical element to be large compared %) The simplest analytical method is to specify the transverse
w(z), distortions due diffraction or spillover can be made to eam profile in the plane of an aperture and to propagate the

L beam forward using Huygens’ principle. This principle can
be negligible. be expressed 487]

is the phase due to the curvature of the wave fronts, and

B. Bessel beam modes k  exdik(R—2)]

e(X,y,2)= ——
A different form for the solution to the wave equation is (x.y.2) 21l J aperture R

obtained by assuming that the entzendt dependence of
the solution is contained in the plane-wave phase in(&Q.
and hences is a function ofx andy only. Introducing the
angular spectrum £p) of the field[23],

n-R
R

[
1—|—WQ

X e(x",y’",z"). (19

L Here,k=w/c, R is the radius vector from the element of
2 H H 4 [N - H
I . . surface integrationlS' at (x’,y’,z’) to the point of obser-
s(xy) 2 Jo de Ale)exiik, (xcosetysine)] vation (x,y,z), andn is a unit vector that is normal to the
(16) plane of the aperture and directed towards the observation

point. Further, the functior in the integrand is assumed to

is anexactsolution of the wave equation provided the trans-pe given on the aperture. The key dependence in(H3j.is

verse wave numbek, =k, (& cosete,sing) satisfies the  the phase factor exiR). For definiteness here, the aperture

dispersion relation is taken to be the plang’=0, from whichn=¢,. In the
paraxial limit, R in the exponent may be approximated by

w?=c?(B2+K?), (17)

12 12

whereg, (&) is the unit vector along the(y) axis. Equation R=z+ X=XD7Hy—y') NI (20)
(16) is the representation of the beam in terms of a continu- 27
ous set of infinite plane waves with direction cosines 5 ’ , "
[(ck, /w)cose,(ck, /w)sing,cBlw] [36]. The x,y spatial fre- e cogd—-46") L (21)
quencies arel{( /2m)cose,(k, /27)sing. For k, /8<1, the 2z z 2z’
spatial frequency components are only slightly inclined to
the z axis and the electromagnetic field has beamlike charaowhere ¢,0) and (',0’) denote the polar coordinates at the
teristics with a dominant direction of propagation. observation point and at the aperture, respectively. Substitut-

For an azimuthally symmetric angular spectruie) ing Eqg. (21) into Eq. (19), to leading order, the field at the
=go=const, Eq.(16) reduces to the fundamental Bessel observation point is given by the Fresnel approximation to
beam modg23] Huygens’ integral:
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across the full beam width, with a central peak intensity for
N odd and a central null foN even. Thus, the on-axis inten-
sity of a uniformly lit aperture oscillates at an increasing
frequency as one moves towards the aperture.

B. Validity of the Huygens-Fresnel approximation

In writing Eq. (22), a number of approximations have
been made. One of these involves the neglect of higher-order
i . , terms in the binomial expansion & Eq. (20). This can be

~_ " er2 ver | ST qaracet at justified provided(i) the neglected quartic terms are small
s(r,0,2)~27_rzexp(|kr IZZ)fodr ' fo dg’s(r’,0") compared to the quadratic terms in EQO) and (ii) the
. ) ) phase variation across the aperture due to the quartic terms is
Xexplik[r'“—2rr'cod6—6')1/2z},  (22)  small compared ter/2. In practical cases, where the aperture
is many wavelengths wide, the requiremént is more de-
manding than(i) and can be expressed in the form

FIG. 2. Fresnel zone plates.

wherea is the aperture radius.
Equation(22) may be written in a scaled form, permitting

useful interpretatior{22]. The intensity at an observation z a \»3

point z=L can be imagined to consist of contributions from 5> N (27)

annular rings on the aperture whose radjE[(x—x;)?

1y211/2 ;

*(y=yn)"1" are given by Generally, this limitation applies to nonparaxial beams

rﬁan)\ (23)  where there are sharp discontinuities in amplitude or in
phase. For paraxial beams, however, the validity of the
(Fig. 2), defining Fresnel zones=1,2,3 ... . Onaccount Huygens-Fresnel approximation is not limited by Eg7).

of the phase factor in the integrand of E2), each succes- By direct substitution, one can verify that E§2) is anexact
sive zone makes an equal contribution to the integral, withsolution of the paraxial wave equation, Edl), irrespective
alternating sign. For an aperture of radaysthe number of of the value ofz. Since the area of Fresnel zones is propor-
Fresnel zone#l as seen from the observation pomis [22]  tional to L [Eq. (23)], Eq. (22) remains well-behaved ds

) —0. In fact, Eq.(27) can be viewed as providing an estimate

N= a- (24) of the distance beyond which an initially nonparaxial beam
Z\ becomes paraxidP2]. In what follows, only paraxial beams
. _ ) will be considered and Ed22) will be assumed to be valid
in terms of which Eq(22) can be rewritten as for z>0.
) . ) 1 2
SQ’_'NGXQ'WN(”a)]JQdPPJ; do’z(p,0") IV. GENERATION OF BESSEL BEAMS
x expli N[ p2—2(r/a)p cod 6— 6")]1, (25) The angular spectrum representation in @) helps one

devise means for generating Bessel beam modes. The pur-

where p=r'/a. For an azimuthally symmetric system, the pose of this section is to examine three methods of generat-

angular integral is readily performed to obtain ing Bessel beams: (i) a circular slit,(ii) a holographic op-
tical element, andiii) an axicon. The aim of the analysis is

to derive expressions for the electric field for these configu-
rations and obtain the form for the axial phase shift in each
case.

dee' exd —2wiN(r/a)pcog6—6")]
0

=2mJo[27N(r/a)p],

and Eq.(25) reduces to A. Circular slit

Consider a narrow circular slit of mean diametgplaced

~_ Do i 2
&(r.z)~—2miN exliaN(r/a)"] in the back focal plane of a thin lens of focal lendtland

1 illuminated by a coherent plane wave of uniform intensity, as
Xf dp pe(p)Jo[27N(r/a)p] shown in Fig. 3[23,39. The slit acts as a source of waves

0 and the lens collects the spatial frequencies whose wave vec-
x exp(i mNp?). (26)  tors lie on the surface of a cone with half-apex angle

=tan Yd/(2f)] andk, = (w/c)sind. If Ris the radius of the
Observe that the diffraction pattern given by Eg@6) de- lens, the spatial frequencies overlap and form a line focus
pends onz only through the Fresnel number. The linht  that extends a distanég,;= R/tand~2 fR/d (9<1).
<1 leads to the far-field pattern and for a uniformly illumi-  To demonstrate that this system forms a Bessel beam, one
nated circular aperture one obtains the well-known Airy disktakes the field just after the slit to be given in termssa
with a dominant central lobe. The near-field pattern, i.e., thdunction,e = g¢(d/2) 8(r —d/2). Making use of Eq(26), this
limit N=1, is more complex. For uniform illumination of a input field can be propagated to obtain the field at the surface
circular aperture, the pattern haklarge amplitude ripples of the lens,
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B. Holographic optical element

A uniformly illuminated thin slit in an opaque screen is
clearly an inefficient means of generating Bessel beams due
to the severe loss of light. A holographic optical element
(HOE) can also generate Bessel beams, offering the potential
of 100% transmission efficiency while at the same time dou-
bling the depth of field of the focal region. To analyze the
effect of an HOE, it is necessary to first recall the optical
properties of Fresnel zone platetl].

Refer to Eq.(23) for the radius of thenth Fresnel zone
(Fig. 2), consider a uniformly illuminated transparent disk
and recall that the contribution from one zone is nearly can-
celed by that from the next. Clearly the intensity of the ra-
diation emerging from this disk will increase significantly if
either the even- or the odd-numbered zones are blocked out.
Consider now a point sourcgon thez axis at a distance
from a zone plate. By considering the optical path difference
between the direct ray to a poiRtat a distances past the

FIG. 3. Bessel beam formed by illuminated circular slit placed
in back focal plane of lens of focal lengthand radiusR. Mean
diameter of slit isd; Z; is propagation distance of Bessel beam.

e(r,f)~ _leso(d/z)Z plate and the ray through theth zone, it can be shown that
[41]
x exp{ik[r2+(d/2)2]/2 f}J[krd/(2)]. 1 1 1
(29 TREvAR T (30

On passing through the lens, the wave fronts experience

Rhich is th | f la fi I ittpri focal
phase delay equal {@9)] ich is the usual formula for a lens witfprimary) foca

Iengthf1=r§/n)\. Thus the sourc&is imaged by converg-
K ing diffractedlight at the image poinP. Zone plates are used
Aend 1) = ﬂ(RZ— r?), (29  toimage atom$42], « particles, as well as short-wavelength
radiation, such as x rays, for which ordinary refraction is
negligible[43]. A common means for making zone plates is
to draw a large-scale version with a high-quality laser printer
that is then photographically reduced.
When light is scattered from a small object and then in-

whose effect on the wave in E8) is equivalent to multi-
plication by a complex-valued transmission functipdr)
=exiA¢iendr)]. Thus the lens exactly cancels the qua-

df,""“? pha;e cqrvqturg n ECZ{ZS)’ leading to a Bessel beam terferes with a reference beam, zone plate fringes are formed.
with intensity distributione Jg[krd/(2)]. _ For an extended object each point generates its own fringe
For comparison with a Gaussian beam, it is tempting G a1tern and the collection of the overlapping zone plate
evaluate a Rayleigh range for the Bessel beam by taking thginges is a recording of a hologram. As discussed in con-
waist to be equal to the radius of tlentral spot; €. Wo  nection with Eq(30), a zone plate functions somewhat like a
~1k, [see Eq. (18] It follows that Zg=mWg/\ |ens in that it diffracts collimated light to a converging focal
~mWo/(K N)~Wp/2sind, from which Zy>Zg since R point. Thus when the hologram is read, by illuminating it
>Wo. Thus with appropriate choices for the slit and lenswith light, the constituent zone plates form images that com-
parameters one can arrange foy; to exceedZg signifi- bine to reconstitute the object.
cantly, apparently beating the diffraction of Gaussian beams. An HOE is a device consisting of a fringe pattern and can
Experiments in support of this conjecture were performed irfunction as a complex lens system. It can be created by ac-
1987, demonstrating a nearly constant intensity from the lengal interferometry or by a computer-controlled plotter simu-
out to a distance- Zg;; [23]. Since then, Bessel beams have|ating an interference pattern. Bessel beams have been pro-
been the subject of much theoretical analysis and experimegtuced by using HOE's that consist of a series of concentric
tal study as a paradigm of what are referred to asircles, Fig. 4, with a constant radius increment from one
“diffraction-free” beams[28-30,40. However, the designa- circle to the nexf25]. Ideally, the effect of the hologram on
tion “diffraction-free” is inappropriate 24,28,29. Briefly, a  the incident wave can be represented by a multiplicative
Bessel beam propagates out to a distance equalsfo  transmission functiom,qe(r)=exgdiA o r)], Where
~R/tand because the adjacent side lobes feed energy into
the central lobe. If the side lobes are clipped, by reducing the Anon(r)=—2r/rg, (31
lens radius tovg, the Bessel beam would propagate no fur-
ther than a Gaussian beam of waigt. In other words, fora andry=const is the hologram fringe spacing. Inserting this
fair comparison it is necessary to take a Gaussian beam wittnansmission function into Eq22), one obtains
the same transverse extent as the full Bessel b@auth not
just the central lobe of the beamif this is done, careful
comparison of a Bessel beam with a Gaussian beam reveals
that the latter has, in fact, a better energy transfer capability
[28,29. xexdi(kr'2/2z—2mr'Irg)], (32

—ik a
e(r,z)~ — %0 exp(ikr?/2z) fo dr'r’Jo(krr'/z)
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FIG. 4. Hologram for generating Bessel beam.

wherea is now the hologram radius. Equati¢82) may be

simply evaluated by making use of the method of stationar;’a

phase. Assuming the exponential in E82) is the most
rapidly varying factor, the phase

Yin=Kr'212z—2ar'"Ir (33
is stationary at

4
re<a.

ri=2mz(kry), (34)

Observe that there is no stationary phase point whés
large enough that,>a. Thus

S(r,Z)% 80J0(27Tr/r0)

X exfi(kr2/2z—m\z/r3)[1—H(z—ary/N)],
(35

whereH() is the Heaviside unit step function. The first and
second terms in the exponential factor in E85) represent
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FIG. 5. Simple axicon optical element for generating Bessel
beam, showing ray incident at radiusRefractive index of axicon
material isn, base radius iR, and Z, is depth of field of focal
region.

The simplest method to realize the HOE phase function is
to record the HOE in a binary-amplitude form. Diffraction

substantially if the binary-amplitude structure is replaced
with a binary-phase structure. Using lithographic methods,
multiphase holograms with efficiencies approaching 100%
can be fabricatefi25].

C. Axicon

An axicon is an optical element that forms a line image of
a small sourcd44]. A Bessel beam can be easily formed
with high conversion efficiency with the use of an axicon.
Axicons can be utilized in applications such as precision
alignment, materials processing, writing, and scribing
[27,31]. Additionally, they can be used to obtain continuous
extended sparks in gaséd5,46 and long-thin optically
pumped plasmas in excited states suitable for laser[d&in
The utility of axicon optical elements in the context of laser-
driven accelerators has also been ndte@14,15.

Referring to Fig. 5, one can obtain an expression for the
extent of the line focus based on purely geometrical optics
considerations. Applying Snel’s law to refraction of a ray at
the inclined face of the axicon, one obtains

the curvature and Guoy phase, respectively, for the HOE.

Omitting multiplicative constants, the time-averaged inten-

sity distribution is
I(r,2)=|e(r,2)|?
=(2mlro)2e535(2mrIrg)[1—H(z—arg/\)],
(36)

nsina=sin(9+ a), (39
wheren is the refractive index and is the angle indicated in
Fig. 5. For a ray incident at radius the line focus extends
from the apex out to a distan&g,, where

Z,=r(cotd—tana). (40

i.e., the ubiquitous Bessel beam distribution. Observe that Tq obtain the electric field distribution in the image plane,

the propagation distance of the Bessel beam in(B§). is
(37)

ZHOE: arol)\.

Writing ro=a/N;, whereN; is the number of fringes on the
HOE, Eq.(37) becomes
Zroe=a%/N¢\. (38

This is identical to the primary focal length in E@O) for a
Fresnel zone witiN; zones. Equatiori38) clearly demon-

strates that the propagation distance of the beam is a charac-

teristic of the HOE employed in generating the bel3a].
The propagation distance in E(B8) is in excellent agree-
ment with experimental observatiof@5].

consider the rayQ Q' P that is incident on the plane face of
the axicon at a radial distancé from thez axis, as shown in
Fig. 6. The ray emerges from the axicon at the p@nhiwith

FIG. 6. Details of axicon optical element for evaluation of elec-
tromagnetic field using Huygens'’ principle.
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coordinates 1(',6',z) and propagates to the observation
point P with coordinates I(,6,z). The optical path length
[QQ'P] can be written as

[QQ'P]=nzy+[(z—2zg)?+r2+r'?—2rr' cog 6— 6')]*?
re’ oo Jr1r2+r’2
cog6—6") 5 -2
(41)

~z+(n—1)zp— 7

wherez, can be written in terms of the axicon radiBsas
Zo=(1-r'/R)Rtana. (42

For an annular beam with uniform intensity Ry,<r’
<Rmax: EQ. (19 reduces to

e(P)~—ikeg
xXexgik(n—1)Rtana]
meax dr'r’
x Ryin 2+ (N—1)(R—r")tana

krr’
z—(R—r")tana

ﬂ'{ (r’+r'?)/2
xXexp ik

z—(R—r")tana
For asymptotic evaluation of the integral in E@3), one
finds that the stationary phase point is located ‘at z(n
—1)tane, from which

e(P)~gpexp —iml4)J2mkz(n—1)
XtanaJg kr(n—1)tana]

Xexgik(n—1)Rtana]

X Jo

(n—=21)r' tana

|

(43

k
xexp[i E[rzlz— z(n—1)%tarf «]

X{H[z(n—1)tana— Ryn]

—H[z(n—1)tana— Ryad}- (44
Observe that the field amplitude in Ed4) is proportional to
(n—1)tana. The limit n—1 or a—0 corresponds to no
axicon in the path of the incident light.

For the axicon beam, the all-important axial phase shift i
given by —kz(n—1)%tarf a/2 in the second exponent of Eq.
(44). This is analogous to the phase shiftan {(zZ) in Eq.
(15) for the Gaussian beam aﬁdw)\z/rg in the exponent of
Eq. (35) for the HOE. A cumulative axial phase shift is ex-

pected to emerge whenever radiation beams pass through a

focus[22].

V. VACUUM BEAT WAVE ACCELERATION
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FIG. 7. Schematic of vacuum beat wave accelerator configura-
tion driven by two collinear and copropagating Gaussian laser
beams coming to a common focuszy}.s. The waist of the laser
beam of frequency; (w,) is W1 (Wg2).

for Bessel beams. Acceleration and bunching of electrons
with two Gaussian laser beams with differing frequencies has
been analyzed in depth elsewhgté,13,48. The key idea in

the VBWA concept is that by appropriate choice of param-
eters, the Guoy phase shifts of the individual laser beams can
be made to cancel out in thex B force. Thus, while the
individual laser beams are superluminous, the beat wave is
luminous and can be near-synchronous with particles. For
brevity, an outline of the derivation of the expression for the
energy gain will be presented, referring the reader to Ref.
[13] for details.

A. VBWA with Gaussian beams

Figure 7 is a schematic of the VBWA configuration
driven by Gaussian beams. To conform to Rf3], the
vector potential of each circularly polarized laser be@m
dicated by suffiy = 1,2) is written in a form that is similar to
Egs.(4) and(12), i.e.,

_ AojWo; 2002 ,
Aj—Texq—r /WJ-)(excoswj+eysm¢j)+Azjez,
J (45
where
U= it YT i T o (46)

is the phase) | is the wavelengthZg;= wngn\j is the Ray-
leigh range for the beam with waist;q, A, are con-
stants, ana, ,e,,€, are unit vectors. The plane-wave phase,
spot size, curvature phase, and Guoy phase in @§s.and
(46) are given by Eqgs(5) and (13)—(15), respectively, with
appropriate juxtaposition of the suffjx

S The rate of change of the relativistic factgrcan be ex-

pressed as
dy (kpy—kpaa, |
E”mzl—mos'r‘(‘/’f‘*’“)’ (47
where kj=27r/)\j is the wave number, éj

= (@0;Woj /Wj)exp(=r?Wwf), ao;=|e|Ag;/(mc?) is the nor-
malized vector potential, y=[1+ (ps/mc)?+ (p,/mc)?

The purpose of this section is to take the example of thet (p/mc)?]¥2 andp, , is thex,y,zcomponent of the mo-
vacuum beat wave acceleratBWA ), evaluate the energy mentum. Equatiori47) is based on the assumption that the
gain, and compare the result for Gaussian beams with thahange in the energy is predominantly due to interaction with
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the slowly varying beat wave, via the< B force, rather than
direct interaction with the electric field of the laser beams
[11,13.

The equation of motion for the phase differenge— ¢,
is given by

d(g2— ) .
%#kz—ki)wp#—ﬁm

ZBL~Y

( z— Zfocus)

B
1 1 FIG. 8. Vacuum beat wave accelerator configuration driven by
7w 7w (48 two collinear and copropagating Bessel laser beams formed by
rRoW2  LR1Wj

compound axicon. Incident beams are annular, uniformly illuminat-
iNg regionsr i, 1<r <rmax1 With laser beam 1 and, »<t <rmax>

where g, the beat wave phase velocity normalizecttas with laser beam 2.

given by

1-(1-22)r?/w3 1-(1-25)r?/w? I may
poi=1- (1-%) 2 . (1-2) i zmaﬂzﬁﬂRi—rma)q-)tanaj+R1+5jvltanal, (53)
P (Ko—K1)Zra(1+25)  (kKy—kq)Zpa(1+29) i

(49

as the minimum and maximum axial locations—uwithin geo-

2;=(2~ Ztoeud! Zrj Ztocus is the (common focal point of metrical opti_cs—of thejt_h annular_ beam, rt_espectivel_y. Here
the two laser beamg@= (3, ,3,) =V/c is the particle veloc-  I'maxj ("minj) is the outerinnen radius of thejth beam in the
ity normalized toc, andr is the radius vector to the particle. incidence planeR=R;+R; is the radius of the axicon base,

In Ref. [13], several limits of the interaction of particles the anglesy; and «; are indicated in Fig. 8, and; , is the
with the beat wave generated by two Gaussian laser beankgonecker delta. Subtracting E¢52) from Eq. (53), the
were examined. If, for simplicity, one considers the case of @xial extent of thejth beam in Fig. 8 is given by
synchronous interaction with two laser beams, the change in

energyW(®=mc?fdz(dy/dz) may be written as Z4j= (' maxj — I'minj) (COtJ;—tana;). (54
WO = 719~ Lk, — kl)zRaﬁag@ SiNYyn, (500  The equation of motion for the evolution of the phase differ-

ence in the Bessel beam beat wave is given by

where, in practical units, for a Gaussian beam

(v ) P
P z dz

dz :(kZ_ kl) ’ (55)

(G)

0j —

Pj (TW)T/2 )\j 51)

0.0432| wyp;"

where, making use of Eq44), the normalized Bessel beam
In Eqg. (51), P;(TW) is the laser beam power in TW. Equa- beat wave phase velocity is given by
tion (50) is appropriate for the case where the Rayleigh
ranges of the two beams coincide, i8g=Zg,=Zg. The -1 (n—1)2 wytarf a,—w tarf @y r
case of equal Rayleigh ranges is of interest since it ensures Bpn =1- 2 P 272"
that the Guoy phase shifts of the two laser beams cancel in (56)
the vX B force. Moreover, it follows from Eq(49) that the
equality of the Rayleigh ranges implies that the on-axisFor comparison with Eq(50), Bpn=1 in Eq. (55 (for r
phase velocity of the beat wave is constant and equal to =0) provided
Thus it is plausible to assume that the particle maintains a

2

constant phases,= i, — ¢, relative to the beat wave pro- tana; [ w,|?
vided its transverse excursions are negligifla.the simu- tana. o (57
lation results to be presented later, these assumptions are not 2 !
made) or, making use of Eq(39) for small angles,
B. VBWA with Bessel beams O [0\ Y?
. . . —=~|— 58
Figure 8 depicts a possible VBWA arrangement employ- ¥y \wq (58)

ing a compound axicon focusing element that is configured
to permit an overlap region for the two laser beams. TheThe choice in Eq(57) ensures that the Guoy phase shifts of
incident laser beams are assumed to be annular, with thae two laser beams cancel in thex B force. Thus, for a
lower frequency beam surrounding the higher frequencyynchronous interaction withys,= ¢, — ¢ =const, the
beam. To generalize E40) to annular beams, it is useful to change in energy for a Bessel beam driven VBWA is
define

Fmin] WP = 7y ko~ kl)(zﬁwax_ Zrznin)F singrsy,, (59

Zmin j :tan’&j + (RJ - rminj)tanaj + R1+ 5j’1tana1, (52)

where
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angBl)ang ’_kzkl(n—1)2tanalJo[k1r(n— 1)tana, ] TABLE |. Parameters for Gaussian beam driven vacuum beat
o wave accelerator.
XtanayJo[Kor (n—1)tanas,], (60)
Injection energy 4.5 MeV
P (TW)]¥2 \, Normalized emittance 1.z mm mrad
COJ Il B (61 . .
0 7| 0.0864 Ary’ Particle beam waist Am
Wavelengthi | 1um
and Laser beam waistvg ; 4 um
Rayleigh range&Zg, 50 um
(2 2 R
Ari_(rmaxj rminj) : (62 Power(1-um beam P, 15 TW
In writing Eq. (59), it is assumed that the axicon angles and"°Wer(1/2-um beam P, - 3TW
incident beam dimensions are such that the two Besséformalized vector potentia,y 148
beams overlap on theaxis in the range,<z<zpa. This  YECtor potential ratid, /o, 1
will be the case for the simulations in the next section. ~ Waist ratiowo ,/wo m2

C. Comparison of Gaussian and Bessel beam driven VBWA )
of the vXB force [49]. For the Gaussian case, the code

makes use of Eq€45) and (46) for each of the prescribed
laser beams. For the Bessel beam case, the laser fields are

The VBWA driven by the two laser beam profiles may be
compared by evaluating the rat®/W(®. Making use of

Egs.(50) and(59), one finds, for smalk; , obtained from Eq(44) in the region defined by Eq54).
B) 2 _ 2 ) The simulation results are for two laser beams, one at 1
— = =(n—1)%tana, tana,—— o (63  mm and the other frequency-doubled to 1. A 4.5-MeV
w(e) ArAr, beam (represented by 4000 macropartiglés injected up-

stream with finite emittance, coming to a focus in the inter-

action region. Two cases are compared&, a Gaussian

beam driven VBWA, and, a Bessel beam driven VBWA.

To compare similar cases, the power in the laser beams is the
WE /WO = 1. (64) same for the two cases. This im_plies that the field strength

(i.e., the vector potentialn caseB is small compared to that

Thus, within the limits of the approximations made, a Gaussin caseA.

ian beam driven VBWA is as efficient as a Bessel beam

driven VBWA. Physically, the reason for this is that a longer

interaction length in the Bessel beam case is obtained at the _ ) ]

expense of reduced field amplitude. However, in the follow- _Table I lists the parameters for the Gaussian beam driven

ing section it will be shown, by full-scale numerical simula- VBWA. In this case, the particle beam is arranged to form a

tions that allow transverse excursions of the particles as welvaist (minimum spot sizethat is equal to that of the am

as the full complement of the electromagnetic fields, thaf@ser beam. Theunperturbedi particle and two laser beams

provided the producP, P, is the same for the Gaussian and
Bessel beams. For small angles, making use of E&@,
(53), and(57), one finds the remarkable result

A. Gaussian beams

W /W((B) ~2_3 in a particular example. have a common focal point, i.e., all three form a waist at the
samez location. Figure @) shows the peak energy and Fig.
VI. NUMERICAL RESULTS 9(b) shows the centroid radius as functions of the normalized

axial distancez/Zg,, whereZg; is the (common Rayleigh

Based on the analytical model developed in Sec. V, itrange of the two laser beams. The particles start out 40 Ray-
appears that a VBWA driven by Bessel beams has the sanieigh ranges upstream of the laser beam foci and are fol-
energy gain as that driven by Gaussian beams. As noted fiowed to 40 Rayleigh ranges downstream, i.e., the interaction
the preceding section, the analytical model used for thigegion is in the vicinity ofz/Zgz,=40 in Fig. 9. The peak
comparison is highly simplified. One can always choose paenergy of the beam after the interaction is observed to be 18
rameters such that the Guoy phase shifts of the two lasévleV. To put the transverse displacement in perspective, the
beams cancel out in thex B force on a particle moving divergence angle in Fig.(B) is relatively small,~7 mrad.
along thez axis, allowing synchronous interaction. However, Figures 9c) and 9d) are the radial and axial phase-space
the model neglects transverse displacements of thplots at the end of the runcg=0.4cm). The phase-space
particles—that can lead to detuning—and retains only theplots show a relatively large spread in the particle distribu-
second-ordery X B, driving term. In this section, numerical tion, indicating a lack of strong trapping in the VBWA, al-
simulations of the two cases are presented, avoiding the antitough it should be noted that at this timerE& 0.4 cm) the
lytical simplifications. The numerical method makes use of daser beams have completely diffracted away. Figures 9
leapfrog integrator to push particles in the prescribed fieldand 9f) show thex-y and the{-v,/c phase-space plots,
of the laser beams. The fully relativistic Lorentz equations ofrespectively, at7=0.3 cm. Thex-y phase-space plot shows
motion, includingall the field components, are solved on the a nearly azimuthally symmetric distribution of particles that
fast temporal and spatial scales, with no averaging. The pais partially hollowed out due to scattering. Figuré Bshows
ticle equations of motion are integrated in the speed-of-lighta beam of particles emerging from the interaction and propa-
coordinate system, with independent variahjesct—z and  gating towards the left with a relatively narrow distribution,
7=t. Boris’ rotation is used for accurate finite differencing lying inside a cone with half-angle-0.1 rad.
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FIG. 9. Simulation results for VBWA driven by Gaussian laser beams, employing initially converging 4.5-MeV finite-emittance particle
beam. Particles are injected 2+ 0,40 Rayleigh range&0 Zg,) upstream of thécommon laser beam foci. Plots qf) peak energy(b)
centroid radius are shown as functionszti¥ r,, while (c) and(d) show radial and axial phase-space plots at end ofawr;,0.4. Thex-y
and¢-v,/c plots, (e) and(f ), respectively, are at7=0.3.

B. Bessel beams out well before the axicon beams form a line focus and the

Table Il lists the parameters for the Bessel beam driveunperturbegiparticle beam is arranged to have a waist of 4
VBWA. The axicon material is taken to be ZnSe, with the #m halfway along the line focus. For comparison, the radii
refractive indexn= 2.6 assumed to be the same for both theOf the central lobes of the Bessel beams measure 7.751 and
1- and thei-um light. While not necessarily optimal, the 5.481um, respectively, for the 1- and 1/2m light. Figure
relatively large refractive index allows the use of a thin axi-10(@) shows the peak energy while Fig. (bD shows the
con for a given configuration. The length of the overlap re-centroid radius as functions of the normalized axial distance
gion is 2.58 mm; as a result of this long interaction length,z/Zg,, where, for ease of comparisodg;, has the same
the normalized vector potential in Table Il is much less thamumerical value as in Figs(& and 9b). The region around
that for the Gaussian beam case in Table I. The particles staihe axis where the annular beams form a focus is well-
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TABLE II. Parameters for Bessel beam driven vacuum beatscale length for the diffraction and phase shift of a beam of

wave accelerator. electromagnetic radiation depends on the transverse profile

of the beam. Ordinarily, laser beams are formed by conven-
Injection energy 4.5 MeV tional optical elements and have a Gaussian transverse pro-
Normalized emittance 1.2 mm mrad file. Other optical elements, such as axicons and zone plates
Particle beam waist Am (hologramg, form beams whose transverse profile is a Bessel
Wavelengthi 1 um function. Base_d on Huygens'’ principle, expr_essions for the
Power(1-um beam P, 15 TW electromagnetic field of a Bessel beam that is formed by an
Power(1/2-um beam P, 3TW axicon illuminated by an annular laser be_am have been ob-
Normalized vector potentiad 0.01 tained. These expressions are used to derive and compare the

pote 0.1

energy gain with that for a Gaussian beam driven vacuum

Vector potential ratica 2/ao,1 L 3 beat wave accelerator. In the VBWA, the Guoy phase of the
ay=a; V2 1.25 two laser beams can be canceled out by proper choice of
Vp=01/v2 2° parameters, leading to a beat wave with a phase velocity
I min2= I min 1/V2 0.405 mm equal toc. An analytical model—neglecting detuning, trans-
I max,2= I max,1/V2 0.495 mm verse displacements of the particles, and including \the

X B interaction only—predicts equal energy gains for the
two configurations. Full-scale, finite emittance particle simu-
defined with relatively sharp boundaries. As a consequencgations show that in practice the energy gain for the Bessel
the peak energy in Fig. 18 rises rapidly as the electron beam driven vacuum beat wave accelerator is a factor 2—3
beam enters the overlap region. The peak energy of the bealess than that for a Gaussian beam driven configuration. The
after the interaction is about 7 MeV. There is a small drop inparticle beam emerging from the interaction is, in both cases,
energy forz/Zz,>350; this is an artifact of radial walk-off nearly azimuthally symmetric, with a relatively small angu-
of some of the high-energy particles. Comparing Figs) 9 lar divergence. The difference between the analytical predic-
and 1@a), it may be concluded that the final energy for thetion and the simulation results for the energy gain can be due
Bessel beam driven VBWA is a factor 2—3 less than thelo several reasons, e.g., neglect of transverse particle dis-
Gaussian beam case. FiguregclOand 1@d) display the placement in the analysis. Figureghpand 1@b) show that
radial and axial phase spaces at the end of the wn ( high-energy particles can wander off thexis to distances
=2 Cm)_ As with the Gaussian case, the phase-space p|o@y0nd the radial scale Iength of the laser beam, where the
show a relatively large spread in the particle distributionGaussian and the Bessel beam profiles are quite different.
since the laser beams have long diffracted away. FinallyRadial displacements also affect the wave-particle phase re-
Figs. 1Ge) and 1Gf) show thex-y and theZ-v,/c phase- lationship that can, over an extended interaction d|§tance,
space plots, respectively, ar=1.5cm. Thex-y phase- lead to significgnt differences bet'ween the energy gains.
space plot shows a nearly uniform distribution of particles. It is appropriate to conclude this paper by considering the
Note that, unlike the Gaussian-driven VBWA case in Fig.relative merits of Bessel and Gaussian beams in other laser-
9(e), the distribution is not hollowed out. Figure 0 shows ~ driven acceleration mechanisni85]. This can be accom-

a beam of particles emerging from the interaction and propaPlished using scaling arguments and assuming that ph{:\se
gating towards the left with a relatively narrow distribution, Synchronism can be maintained by some means. The detailed

lying inside a cone with half-angle-0.1 rad. comparison between analytical calculations and full-scale
simulations of the VBWA contained in this paper implies
VII. DISCUSSION AND CONCLUSIONS that scaling relationships based on general arguments suffice

to within factors of order unity.

Laser-driven accelerators are typically characterized by The VBWA may be grouped with the laser wakefield ac-
very large acceleration gradients. Diffraction of laser beamscelerator (LWFA) and the plasma beat wave accelerator
however, imposes a serious limitation on many of theséPBWA) since they rely on ponderomotive force and the
schemes by restricting the interaction length. Additionally,interaction is quadratic in the field strendth]. The cyclo-
on passing through a focal region a beam undergoes a Guason autoresonance accelerat®ARA) [50-54, inverse
phase shift that detunes the wave-particle interaction. Th&ee-electron laseflFEL) [20], and inverse €renkov accel-

TABLE Ill. Comparison of Bessel and Gaussian laser beams for acceleration.

Acceleration Ratio of Ratio of Ratio of

mechanism accel. length accel. gradient final energy
L®B)/L©) E®B)/E(G) WE WG

IFEL N(wB)/w(©))2 (W@ /wB) (PN P©))1/2 (WB W@y (NPEB)pE))1/2

CARA N(wB)/w(®))2 (W@ /wB)) (PN P©))1/2 (WB W@y (NPEB)pE))1/2

ICA N(W(B)/W(G))Z (W(G)/W(B))Z( IONN p(G))llz (N P(B)/P(G))”Z

VBWA N(wB)/w(©))2 (W@ /wB)2(pB)NPC)) pE)/p©

LWFA N(w®/w(€))2 (WO w®)2(pE) N PC)) p®/p©

PBWA N(w®/w(C))2 (W@ w®)2(pE)NPC)) p®/p©

(B) /\y(G))2 (G) /(B 2( p(B) (G)y1/2 (B) (G)y1/2
VA (WBw(©) (W w(B)2(PB)NP©)) (PB/NP©)
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FIG. 10. Simulation results for VBWA driven by Bessel laser beams—formed by a compound axicon optical element—employing

initially converging 4.5-MeV finite-emittance particle beam. Particles are injected well upstream (fothenor) overlap region of the
axicon beams. Plots dfi) peak energy(b) centroid radius are shown as functionszZz,, while (c) and (d) show radial and axial
phase-space plots at end of r@r=2. Thex-y and{-v,/c plots, (e) and(f ), respectively, are at7=1.5.

erator(ICA) [15] mechanisms have in common the property Woce L. (65)

of being linear in the laser-field strength. Finally, the vacuum

acceleratofVA) [7,12,15, driven by a single laser beam, is From Egs. (1)-(3), for a Gaussian beam s
. y V4

exceptional since the acceleration distance is limited byQC[P(G)]lIZ/[W(G)]Z whereP(®) is the beam powet, is on
phase slippage. In all the examples, the change in energy {ﬁ d f R, leiah ¢~ ©)12/), qw©
written asW=EL, whereE is the acceleration gradient and € order ot a Rayleigh range,’ mw ] , andw

L is the acceleration distance. The outline of the scaling ar[eplaces the spot sizg, for notational clarity. Hence,
gument for the ICA is as follows. In the ICA, the change in

electron energy is the result of interaction with the axial

component of the laser electric fiedd and can therefore be

written as

WG e[ p(O)L2 (66)

On the other hand, for a Bessel beam whhlobes ¢,
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«[PENTYY[wB)]?, whereP(®) is thetotal beam power|

=Na[w®]?/\ andw® is the radius of thecentral lobe.

+a3)Y? then becomes proportional to thiest power of the
laser field[5]. Second, for brevity the entries for the VBWA

Hence, and the PBWA—involving two laser beams—assume that
- (B2 the laser power in each beam is the same. Finally, in the VA
Wl [NPH]H (67) the acceleration distance is limited by phase slippage inde-
Combining Egs(66) and(67), it follows that pendent of the beam profile.
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