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Analysis of Gaussian beam and Bessel beam driven laser accelerators

B. Hafizi,1,* A. K. Ganguly,1 A. Ting,2 C. I. Moore,1,† and P. Sprangle2
1Omega-P, Inc., P.O. Box 202008, New Haven, Connecticut 06520-2008

2Plasma Physics Division, Naval Research Laboratory, Washington, D.C. 20375-5346
~Received 27 April 1999!

This paper presents a comparison of Gaussian and Bessel beam driven laser accelerators. The emphasis is on
the vacuum beat wave accelerator~VBWA !, employing two laser beams of differing wavelengths to impart a
net acceleration to particles. Generation of Bessel beams by means of circular slits, holographic optical
elements, and axicons is outlined and the image space fields are determined by making use of Huygens’
principle. Bessel beams—like Gaussian beams—experience a Guoy phase shift in the vicinity of a focal region,
resulting in a phase velocity that exceedsc, the speed of lightin vacuo. In the VBWA, by appropriate choice
of parameters, the Guoy phases of the laser beams cancel out and the beat wave phase velocity equalsc. The
particle energy gain and beam quality are determined by making use of an analytical model as well as
simulations. The analytical model—including thev3B interaction—predicts that for equal laser powers
Gaussian and Bessel beams lead to identical energy gains. However, three-dimensional, finite-emittance simu-
lations, allowing for detuning, transverse displacements, and including all the electromagnetic field compo-
nents, show that the energy gain of a Gaussian beam driven VBWA exceeds that of a Bessel beam driven
VBWA by a factor of 2–3. The particle beam emerging from the interaction is azimuthally symmetric and
collimated, with a relatively small angular divergence. A table summarizing the ratios of final energies,
acceleration lengths, and gradients for a number of acceleration mechanisms is given.
@S1063-651X~99!02510-6#
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I. INTRODUCTION

Attainment of the high intensities necessary for las
driven accelerators@1–21# requires that the beam be focus
down to a waist that is a few wavelengths in diameter. Fo
highly focused beam, the distance over which this high
tensity can be sustained is relatively short due to transv
spreading. The free-space scale length for diffraction o
collimated Gaussian beam, depicted in Fig. 1, is the Rayle
range@22#:

ZR5pw0
2/l, ~1!

wherew0 is the waist~i.e., minimum spot size! of the beam,
q5tan21(l/pw0) is the asymptotic divergence angle, andl
is the wavelength. The intensity may be increased by foc
ing the beam down to a smaller waist. This, however,
duces the Rayleigh range and hence the beam remains n
collimated over a shorter distance in the Fresnel region~near
field!, while in the Fraunhofer region~far field! the beam
diverges with a larger angle. Thus the interaction length m
be reduced if a laser beam with a smaller waist is employ

This trade-off between intensity and interaction leng
can be illustrated by an example. For a circularly polariz
Gaussian laser beam, the amplitude«0 of the transverse com
ponent of the electric field is expressible as

*Permanent address: Icarus Research, Inc., P.O. Box 30780
thesda, MD 20824-0780.

†Present address: Plasma Physics Division, Naval Research L
ratory, Washington, D.C. 20375-5346.
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ueu«0 /~mcv!54.8~l/w0!P1/2~TW!, ~2!

where e and m are the electronic charge and mass,v
52pc/l is the frequency,c is the speed of lightin vacuo,
andP is the power, expressed in terawatts. The electrom
netic field associated with a laser beam is predomina
transverse. There is, in addition, a smaller longitudinal fi
component. The longitudinal field may be estimated from
Coulomb gauge condition divE50, or ]Ez /]z52“'•E' ,
where the subscriptsz and' denote the longitudinal and
transverse components, respectively. In order of magnitu
the amplitude«z of the axial component of the field is give
by

«z5O„«0 /~kw0!). ~3!

Making use of Eqs.~1!–~3!, W[«zZR—which is an estimate
for the change in particle energy—is a function of the la
power only. In other words, for a given power,W is the same
independently of whether the laser beam is focused dow

e-

bo-
FIG. 1. Free-space diffraction of Gaussian beam. Waist~mini-

mum spot size! is denoted byw0 andq is asymptotic beam diver-
gence angle.
4779 © 1999 The American Physical Society
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high intensity~and short interaction length! or only slightly
focused~with a long interaction length!.

It is natural to ask what the scaling ofW is for other mode
profiles or acceleration mechanisms and if, for compara
situations,W can be increased. A Gaussian beam, focused
means of spherical optical elements, is the most comm
form of radiation from a laser cavity@22#. A Bessel beam
@23–35# is more exotic and can be generated by a circu
slit, a holographic optical element, or an axicon. A Bes
beam forms a ‘‘line’’ image and thus might appear to ha
advantages as regards the interaction distance.

There are two insidious effects associated with diffra
tion. First, there is a fall-off inintensitywith distance. The
second manifestation of diffraction is more subtle. On pa
ing through a focal region, a laser beam accumulates an a
phase shift. The extra phase—called the Guoy phase
effectively increases the phase velocity beyondc, the
vacuum speed of light, and detunes the wave-particle in
action. In Ref.@35#, Gaussian and Bessel beams were co
pared for a number of high-gradient acceleration mec
nisms, assuming that the wave-particle synchronism coul
maintained by some means. For example, it was shown
for a vacuum beat wave accelerator~VBWA !—wherein net
acceleration is imparted by the beat wave of two laser be
of differing wavelengths—the energy gain of the two bea
profiles is comparable.

The purpose of this paper is to analyze the VBW
@11,13# process in detail, supplementing the analytical wo
in Ref. @35# with full-scale particle simulations, and compa
ing the energy gain and particle beam quality for Gauss
and Bessel beams. The scalar wave equation is discuss
Secs. II and III and used to obtain expressions for the im
space fields for Gaussian and Bessel beams. Experim
configurations for forming Bessel beams, such as axic
and zone plates~holograms!, are outlined in Sec. IV. Expres
sions for the amplitudes and phase shifts are derived.
inventive step in the VBWA is that the Guoy phase of t
two laser beams cancels out by proper choice of parame
leading to a beat wave with a phase velocity equal toc,
allowing near-synchronism with particles. Assuming a sy
chronous interaction, in Sec. V an analytical expression
the energy gain is derived for the Bessel beam driv
VBWA using a compound axicon and compared with t
corresponding expression using a Gaussian beam.
model—neglecting transverse displacements of particles
including thev3B interaction—predicts equal energy gai
for the two configurations. Section VI presents the results
full-scale simulation studies, employing prescribed la
fields and finite-emittance particle beams, to compare
energy gain in the two cases. The simulations show tha
practice the energy gain for the Bessel beam driven vacu
beat wave accelerator is a factor 2–3 less than that fo
Gaussian beam driven configuration. Based on scaling a
ments, in Sec. VII the ratios of the energy gains, accelera
lengths, and gradients for a number of laser-driven accel
tion mechanisms are summarized in tabular form.

II. SOLUTIONS OF SCALAR WAVE EQUATION

The scalar wave equation is given by

S“22
1

c2

]2

]t2DE~x,y,z,t !50,
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whereE(x,y,z,t) represents a transverse component of
electric field at point~x,y,z! in space and at timet. The field
can be expressed as

E~x,y,z,t !5 1
2 «~x,y,z,t !exp~ icp!1c.c., ~4!

where« is the envelope and

cp5bz2vt ~5!

is the plane-wave phase andb is the axial wave number. A
this stage one can proceed in various ways depending on
form of «.

A. Gaussian beam modes

If b is chosen to satisfy the free-space dispersion rela

b[v/c, ~6!

one can assume that the envelope is a slowly varying fu
tion of coordinates and time, in which case substitution
Eq. ~4! into the wave equation leads to

F“'
2 12i

v

c S ]

]z
1

1

c

]

]t D1
]2

]z22
1

c2

]2

]t2G«50, ~7!

where“' is the transverse gradient operator. Effecting t
change of variables

h5z2ct, z5z, ~8!

Eq. ~7! reduces to

S“'
2 12i

v

c

]

]z
12

]2

]h]z
1

]2

]z2D «50. ~9!

If the typical scale length associated with the transve
variation of the field isw0 , it follows that ¹'5O(1/w0).
Assuming the axial scale length associated with the la
pulse to bel, the terms in Eq.~9! are seen to have the fol
lowing orders of magnitude:

“'
2 5O~p/lZR!,

~v/c!]/]z5O~2p/lZR!,

]2/]z]h5O~1/lZR!,

]2/]z25O~1/ZR
2 !.

The standard paraxial approximation corresponds to the
dering

ZR , l @l, ~10!

from which Eq.~9! reduces to

S“'
2 12i

v

c

]

]z D «50. ~11!

A well-known solution to Eq.~11! is the fundamental Gauss
ian beam mode@22#
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«~r !5«0

w0

w
exp~2r 2/w2!exp@ i ~c01ck1cG!#, ~12!

wherer 5(x21y2)1/2 is the radius in cylindrical coordinates
«0 andc0 are constants,

w~z!5w0~11z2/ZR
2 !1/2 ~13!

is the spot size atz,

ck~z!5~r 2/w2!z/ZR ~14!

is the phase due to the curvature of the wave fronts, and

cG~z!52tan21~z/ZR! ~15!

is the axial phase shift, due to the Guoy effect, which
present whenever a beam passes through a focus@22#. The
fundamental and higher-order Gaussian beam modes
free-space eigenfunctions of the paraxial wave equation
their properties are well known. In particular, a collimat
Gaussian beam forms a focus with a minimum spot s
~waist! w0 and as it passes through the focus the ph
changes byp over a distance on the order ofZR . Optical
elements with curved surfaces play a special role in
propagation of Gaussian beams or in confining Gaus
beams in optical resonators. When the curvature of th
elements~e.g., mirrors or lenses! is matched to the wave
front curvature of the beam, each element will reflect
propagate the beam with little distortion. By choosing t
transverse size of the optical element to be large compare
w(z), distortions due diffraction or spillover can be made
be negligible.

B. Bessel beam modes

A different form for the solution to the wave equation
obtained by assuming that the entirez and t dependence o
the solution is contained in the plane-wave phase in Eq.~5!
and hence« is a function ofx and y only. Introducing the
angular spectrum A(w) of the field @23#,

«~x,y!5
1

2p E
0

2p

dw A~w!exp@ ik'~x cosw1y sinw!#

~16!

is anexactsolution of the wave equation provided the tran
verse wave numberk'5k'(ex cosw1ey sinw) satisfies the
dispersion relation

v25c2~b21k'
2 !, ~17!

whereex (ey) is the unit vector along thex(y) axis. Equation
~16! is the representation of the beam in terms of a conti
ous set of infinite plane waves with direction cosin
@(ck' /v)cosw,(ck' /v)sinw,cb/v# @36#. The x,y spatial fre-
quencies are (k'/2p)cosw,(k'/2p)sinw. For k' /b!1, the
spatial frequency components are only slightly inclined
thez axis and the electromagnetic field has beamlike cha
teristics with a dominant direction of propagation.

For an azimuthally symmetric angular spectrumA(w)
5«05const, Eq.~16! reduces to the fundamental Bess
beam mode@23#
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«~x,y!5«0J0~k't !, ~18!

whereJ0 is the ordinary Bessel function of the first kind o
order zero. The idealJ0 beam has a sharp intensity peak
axis with an infinitely long depth of field of the focal regio
and thus may be suitable in applications such as preci
alignment. It should be noted that an ideal Bessel beam
an infinite number of side lobes around the central peak a
importantly, each lobe carries nearly as much power as
central peak. In any experimental setup, only a clipp
Bessel beam can be formed and the central lobe is subje
diffractive spreading, with a finite focal depth@24,28–30#.
Nonetheless, the utility of Bessel beams in applications s
as laser-driven acceleration is of interest. In the followi
sections, the particular example of the vacuum beat w
accelerator is considered in detail.

III. SCALAR DIFFRACTION THEORY

To determine the energy gain when a particle intera
with a laser beam, it is necessary to have expressions fo
electromagnetic fields as functions of space and time. Eq
tions~12!–~15! are the necessary forms for a Gaussian be
Since the corresponding expressions for Bessel beams
not well known, the appropriate formulas are derived in t
section.

A. Huygens-Fresnel formulation

The simplest analytical method is to specify the transve
beam profile in the plane of an aperture and to propagate
beam forward using Huygens’ principle. This principle c
be expressed as@37#

«~x,y,z!5
k

2p i Eaperture
dS8

exp@ ik~R2z!#

R

3S 11
i

kRD n•R

R
«~x8,y8,z8!. ~19!

Here, k[v/c, R is the radius vector from the element o
surface integrationdS8 at (x8,y8,z8) to the point of obser-
vation (x,y,z), andn is a unit vector that is normal to th
plane of the aperture and directed towards the observa
point. Further, the function« in the integrand is assumed t
be given on the aperture. The key dependence in Eq.~19! is
the phase factor exp(ikR). For definiteness here, the apertu
is taken to be the planez850, from which n5ez . In the
paraxial limit,R in the exponent may be approximated by

R5z1
~x2x8!21~y2y8!2

2z
1¯ ~20!

'z1
r 2

2z
2

rr 8 cos~u2u8!

z
1

r 82

2z
, ~21!

where (r ,u) and (r 8,u8) denote the polar coordinates at th
observation point and at the aperture, respectively. Subst
ing Eq. ~21! into Eq. ~19!, to leading order, the field at th
observation point is given by the Fresnel approximation
Huygens’ integral:
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«~r ,u,z!'
2 ik

2pz
exp~ ikr 2/2z!E

0

a

dr8r 8E
0

2p

du8«~r 8,u8!

3exp$ ik@r 8222rr 8cos~u2u8!#/2z%, ~22!

wherea is the aperture radius.
Equation~22! may be written in a scaled form, permittin

useful interpretation@22#. The intensity at an observatio
point z5L can be imagined to consist of contributions fro
annular rings on the aperture whose radiir n[@(x2xn8)

2

1(y2yn8)
2#1/2 are given by

r n
25nLl ~23!

~Fig. 2!, defining Fresnel zonesn51,2,3, . . . . On account
of the phase factor in the integrand of Eq.~22!, each succes
sive zone makes an equal contribution to the integral, w
alternating sign. For an aperture of radiusa, the number of
Fresnel zonesN as seen from the observation pointz is @22#

N[
a2

zl
~24!

in terms of which Eq.~22! can be rewritten as

«'2 iN exp@ ipN~r /a!2#E
0

1

dr rE
0

2p

du8«~r,u8!

3exp$ ipN@r222~r /a!r cos~u2u8!#%, ~25!

where r5r 8/a. For an azimuthally symmetric system, th
angular integral is readily performed to obtain

E
0

2p

du8 exp@22p iN~r /a!r cos~u2u8!#

52pJ0@2pN~r /a!r#,

and Eq.~25! reduces to

«~r ,z!'22p iN exp@ ipN~r /a!2#

3E
0

1

dr r«~r!J0@2pN~r /a!r#

3exp~ ipNr2!. ~26!

Observe that the diffraction pattern given by Eq.~26! de-
pends onz only through the Fresnel number. The limitN
!1 leads to the far-field pattern and for a uniformly illum
nated circular aperture one obtains the well-known Airy d
with a dominant central lobe. The near-field pattern, i.e.,
limit N>1, is more complex. For uniform illumination of
circular aperture, the pattern hasN large amplitude ripples

FIG. 2. Fresnel zone plates.
h

k
e

across the full beam width, with a central peak intensity
N odd and a central null forN even. Thus, the on-axis inten
sity of a uniformly lit aperture oscillates at an increasi
frequency as one moves towards the aperture.

B. Validity of the Huygens-Fresnel approximation

In writing Eq. ~22!, a number of approximations hav
been made. One of these involves the neglect of higher-o
terms in the binomial expansion ofR, Eq. ~20!. This can be
justified provided~i! the neglected quartic terms are sm
compared to the quadratic terms in Eq.~20! and ~ii ! the
phase variation across the aperture due to the quartic term
small compared top/2. In practical cases, where the apertu
is many wavelengths wide, the requirement~ii ! is more de-
manding than~i! and can be expressed in the form

z

a
@S a

2l D 1/3

. ~27!

Generally, this limitation applies to nonparaxial beam
where there are sharp discontinuities in amplitude or
phase. For paraxial beams, however, the validity of
Huygens-Fresnel approximation is not limited by Eq.~27!.
By direct substitution, one can verify that Eq.~22! is anexact
solution of the paraxial wave equation, Eq.~11!, irrespective
of the value ofz. Since the area of Fresnel zones is prop
tional to L @Eq. ~23!#, Eq. ~22! remains well-behaved asL
→0. In fact, Eq.~27! can be viewed as providing an estima
of the distance beyond which an initially nonparaxial bea
becomes paraxial@22#. In what follows, only paraxial beam
will be considered and Eq.~22! will be assumed to be valid
for z.0.

IV. GENERATION OF BESSEL BEAMS

The angular spectrum representation in Eq.~16! helps one
devise means for generating Bessel beam modes. The
pose of this section is to examine three methods of gene
ing Bessel beams: ~i! a circular slit,~ii ! a holographic op-
tical element, and~iii ! an axicon. The aim of the analysis
to derive expressions for the electric field for these confi
rations and obtain the form for the axial phase shift in ea
case.

A. Circular slit

Consider a narrow circular slit of mean diameterd placed
in the back focal plane of a thin lens of focal lengthf and
illuminated by a coherent plane wave of uniform intensity,
shown in Fig. 3@23,38#. The slit acts as a source of wave
and the lens collects the spatial frequencies whose wave
tors lie on the surface of a cone with half-apex angleq
5tan21@d/(2 f )# andk'5(v/c)sinq. If R is the radius of the
lens, the spatial frequencies overlap and form a line fo
that extends a distanceZslit5R/tanq'2 fR/d (q!1).

To demonstrate that this system forms a Bessel beam,
takes the field just after the slit to be given in terms ad
function,«5«0(d/2)d(r 2d/2). Making use of Eq.~26!, this
input field can be propagated to obtain the field at the surf
of the lens,
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«~r , f !'
2 ik

f
«0~d/2!2

3exp$ ik@r 21~d/2!2#/2 f %J0@krd/~2 f !#.

~28!

On passing through the lens, the wave fronts experienc
phase delay equal to@39#

Dc lens~r !5
k

2 f
~R22r 2!, ~29!

whose effect on the wave in Eq.~28! is equivalent to multi-
plication by a complex-valued transmission functiont lens(r )
5exp@iDclens(r )#. Thus the lens exactly cancels the qu
dratic phase curvature in Eq.~28!, leading to a Bessel beam
with intensity distribution} J0

2@krd/(2 f )#.
For comparison with a Gaussian beam, it is tempting

evaluate a Rayleigh range for the Bessel beam by taking
waist to be equal to the radius of thecentral spot; i.e.,w0

'1/k' @see Eq. ~18!#. It follows that ZR5pw0
2/l

'pw0 /(k'l)'w0/2 sinq, from which Zslit@ZR since R
@w0 . Thus with appropriate choices for the slit and le
parameters one can arrange forZslit to exceedZR signifi-
cantly, apparently beating the diffraction of Gaussian bea
Experiments in support of this conjecture were performed
1987, demonstrating a nearly constant intensity from the l
out to a distance;Zslit @23#. Since then, Bessel beams ha
been the subject of much theoretical analysis and experim
tal study as a paradigm of what are referred to
‘‘diffraction-free’’ beams@28–30,40#. However, the designa
tion ‘‘diffraction-free’’ is inappropriate@24,28,29#. Briefly, a
Bessel beam propagates out to a distance equal toZslit
'R/tanq because the adjacent side lobes feed energy
the central lobe. If the side lobes are clipped, by reducing
lens radius tow0 , the Bessel beam would propagate no fu
ther than a Gaussian beam of waistw0 . In other words, for a
fair comparison it is necessary to take a Gaussian beam
the same transverse extent as the full Bessel beam~and not
just the central lobe of the beam!. If this is done, careful
comparison of a Bessel beam with a Gaussian beam rev
that the latter has, in fact, a better energy transfer capab
@28,29#.

FIG. 3. Bessel beam formed by illuminated circular slit plac
in back focal plane of lens of focal lengthf and radiusR. Mean
diameter of slit isd; Zslit is propagation distance of Bessel beam
a
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B. Holographic optical element

A uniformly illuminated thin slit in an opaque screen
clearly an inefficient means of generating Bessel beams
to the severe loss of light. A holographic optical eleme
~HOE! can also generate Bessel beams, offering the pote
of 100% transmission efficiency while at the same time d
bling the depth of field of the focal region. To analyze t
effect of an HOE, it is necessary to first recall the optic
properties of Fresnel zone plates@41#.

Refer to Eq.~23! for the radius of thenth Fresnel zone
~Fig. 2!, consider a uniformly illuminated transparent dis
and recall that the contribution from one zone is nearly c
celed by that from the next. Clearly the intensity of the r
diation emerging from this disk will increase significantly
either the even- or the odd-numbered zones are blocked
Consider now a point sourceS on thez axis at a distanceu
from a zone plate. By considering the optical path differen
between the direct ray to a pointP at a distancev past the
plate and the ray through thenth zone, it can be shown tha
@41#

1

u
1

1

v
5

1

r n
2/nl

, ~30!

which is the usual formula for a lens with~primary! focal
length f 15r n

2/nl. Thus the sourceS is imaged by converg-
ing diffractedlight at the image pointP. Zone plates are use
to image atoms@42#, a particles, as well as short-waveleng
radiation, such as x rays, for which ordinary refraction
negligible@43#. A common means for making zone plates
to draw a large-scale version with a high-quality laser prin
that is then photographically reduced.

When light is scattered from a small object and then
terferes with a reference beam, zone plate fringes are form
For an extended object each point generates its own fri
pattern and the collection of the overlapping zone pl
fringes is a recording of a hologram. As discussed in c
nection with Eq.~30!, a zone plate functions somewhat like
lens in that it diffracts collimated light to a converging foc
point. Thus when the hologram is read, by illuminating
with light, the constituent zone plates form images that co
bine to reconstitute the object.

An HOE is a device consisting of a fringe pattern and c
function as a complex lens system. It can be created by
tual interferometry or by a computer-controlled plotter sim
lating an interference pattern. Bessel beams have been
duced by using HOE’s that consist of a series of concen
circles, Fig. 4, with a constant radius increment from o
circle to the next@25#. Ideally, the effect of the hologram o
the incident wave can be represented by a multiplicat
transmission functiontholo(r )5exp@iDcholo(r )#, where

Dcholo~r !522pr /r 0 , ~31!

and r 05const is the hologram fringe spacing. Inserting th
transmission function into Eq.~22!, one obtains

«~r ,z!'
2 ik

z
«0 exp~ ikr 2/2z!E

0

a

dr8r 8J0~krr 8/z!

3exp@ i ~kr82/2z22pr 8/r 0!#, ~32!
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wherea is now the hologram radius. Equation~32! may be
simply evaluated by making use of the method of station
phase. Assuming the exponential in Eq.~32! is the most
rapidly varying factor, the phase

c int[kr82/2z22pr 8/r 0 ~33!

is stationary at

r s852pz/~kr0!, r s8,a. ~34!

Observe that there is no stationary phase point whenz is
large enough thatr s8.a. Thus

«~r ,z!'
22p i

r 0
«0J0~2pr /r 0!

3exp@ i ~kr2/2z2plz/r 0
2!#@12H~z2ar0 /l!#,

~35!

whereH( ) is the Heaviside unit step function. The first an
second terms in the exponential factor in Eq.~35! represent
the curvature and Guoy phase, respectively, for the HO
Omitting multiplicative constants, the time-averaged inte
sity distribution is

I ~r ,z![u«~r ,z!u2

5~2p/r 0!2«0
2J0

2~2pr /r 0!@12H~z2ar0 /l!#,

~36!

i.e., the ubiquitous Bessel beam distribution. Observe
the propagation distance of the Bessel beam in Eq.~36! is

ZHOE5ar0 /l. ~37!

Writing r 05a/Nf , whereNf is the number of fringes on th
HOE, Eq.~37! becomes

ZHOE5a2/Nfl. ~38!

This is identical to the primary focal length in Eq.~30! for a
Fresnel zone withNf zones. Equation~38! clearly demon-
strates that the propagation distance of the beam is a ch
teristic of the HOE employed in generating the beam@30#.
The propagation distance in Eq.~38! is in excellent agree-
ment with experimental observations@25#.

FIG. 4. Hologram for generating Bessel beam.
y
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The simplest method to realize the HOE phase functio
to record the HOE in a binary-amplitude form. Diffractio
efficiency of such an HOE is low. The efficiency improve
substantially if the binary-amplitude structure is replac
with a binary-phase structure. Using lithographic metho
multiphase holograms with efficiencies approaching 10
can be fabricated@25#.

C. Axicon

An axicon is an optical element that forms a line image
a small source@44#. A Bessel beam can be easily forme
with high conversion efficiency with the use of an axico
Axicons can be utilized in applications such as precis
alignment, materials processing, writing, and scribi
@27,31#. Additionally, they can be used to obtain continuo
extended sparks in gases@45,46# and long-thin optically
pumped plasmas in excited states suitable for laser gain@47#.
The utility of axicon optical elements in the context of lase
driven accelerators has also been noted@10,14,15#.

Referring to Fig. 5, one can obtain an expression for
extent of the line focus based on purely geometrical op
considerations. Applying Snel’s law to refraction of a ray
the inclined face of the axicon, one obtains

n sina5sin~q1a!, ~39!

wheren is the refractive index anda is the angle indicated in
Fig. 5. For a ray incident at radiusr, the line focus extends
from the apex out to a distanceZa , where

Za5r ~cotq2tana!. ~40!

To obtain the electric field distribution in the image plan
consider the rayQQ8P that is incident on the plane face o
the axicon at a radial distancer 8 from thez axis, as shown in
Fig. 6. The ray emerges from the axicon at the pointQ8 with

FIG. 5. Simple axicon optical element for generating Bes
beam, showing ray incident at radiusr. Refractive index of axicon
material isn, base radius isR, and Za is depth of field of focal
region.

FIG. 6. Details of axicon optical element for evaluation of ele
tromagnetic field using Huygens’ principle.
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coordinates (r 8,u8,z0) and propagates to the observati
point P with coordinates (r ,u,z). The optical path length
@QQ8P# can be written as

@QQ8P#5nz01@~z2z0!21r 21r 8222rr 8 cos~u2u8!#1/2

'z1~n21!z02
rr 8

z2z0
cos~u2u8!1

1

2

r 21r 82

z2z0
,

~41!

wherez0 can be written in terms of the axicon radiusR as

z05~12r 8/R!R tana. ~42!

For an annular beam with uniform intensity inRmin,r8
,Rmax, Eq. ~19! reduces to

«~P!'2 ik«0

3exp@ ik~n21!R tana#

3E
Rmin

Rmax dr8r 8

z1~n21!~R2r 8!tana

3J0F krr 8

z2~R2r 8!tana G
3expH ikF ~r 21r 82!/2

z2~R2r 8!tana
2~n21!r 8 tanaG J .

~43!

For asymptotic evaluation of the integral in Eq.~43!, one
finds that the stationary phase point is located atr 85z(n
21)tana, from which

«~P!'«0 exp~2 ip/4!A2pkz~n21!

3tanaJ0@kr~n21!tana#

3exp@ ik~n21!R tana#

3expH i
k

2
@r 2/z2z~n21!2tan2 a#J

3$H@z~n21!tana2Rmin#

2H@z~n21!tana2Rmax#%. ~44!

Observe that the field amplitude in Eq.~44! is proportional to
(n21)tana. The limit n→1 or a→0 corresponds to no
axicon in the path of the incident light.

For the axicon beam, the all-important axial phase shif
given by2kz(n21)2tan2 a/2 in the second exponent of Eq
~44!. This is analogous to the phase shift2tan21(z/ZR) in Eq.
~15! for the Gaussian beam and2plz/r 0

2 in the exponent of
Eq. ~35! for the HOE. A cumulative axial phase shift is e
pected to emerge whenever radiation beams pass throu
focus @22#.

V. VACUUM BEAT WAVE ACCELERATION

The purpose of this section is to take the example of
vacuum beat wave accelerator~VBWA !, evaluate the energy
gain, and compare the result for Gaussian beams with
s

h a

e

at

for Bessel beams. Acceleration and bunching of electr
with two Gaussian laser beams with differing frequencies
been analyzed in depth elsewhere@11,13,48#. The key idea in
the VBWA concept is that by appropriate choice of para
eters, the Guoy phase shifts of the individual laser beams
be made to cancel out in thev3B force. Thus, while the
individual laser beams are superluminous, the beat wav
luminous and can be near-synchronous with particles.
brevity, an outline of the derivation of the expression for t
energy gain will be presented, referring the reader to R
@13# for details.

A. VBWA with Gaussian beams

Figure 7 is a schematic of the VBWA configuratio
driven by Gaussian beams. To conform to Ref.@13#, the
vector potential of each circularly polarized laser beam~in-
dicated by suffixj 51,2) is written in a form that is similar to
Eqs.~4! and ~12!, i.e.,

A j5
A0 jw0 j

wj
exp~2r 2/wj

2!~ex cosc j1ey sinc j !1Az jez ,

~45!

where

c j5cp j1cG j1ck j1c0 j ~46!

is the phase,l j is the wavelength,ZR j5pw0 j
2 /l j is the Ray-

leigh range for the beam with waistwj 0 , A0 j ,c0 j are con-
stants, andex ,ey ,ez are unit vectors. The plane-wave phas
spot size, curvature phase, and Guoy phase in Eqs.~45! and
~46! are given by Eqs.~5! and ~13!–~15!, respectively, with
appropriate juxtaposition of the suffixj.

The rate of change of the relativistic factorg can be ex-
pressed as

dg

dz
'

~k22k1!â1â2

~pz /mc!
sin~c22c1!, ~47!

where kj52p/l j is the wave number, â j

5(a0 jw0 j /wj )exp(2r2/wj
2), a0 j5ueuA0 j /(mc2) is the nor-

malized vector potential,g5@11(px /mc)21(py /mc)2

1(px /mc)2#1/2, andpx,y,z is thex,y,zcomponent of the mo-
mentum. Equation~47! is based on the assumption that t
change in the energy is predominantly due to interaction w

FIG. 7. Schematic of vacuum beat wave accelerator config
tion driven by two collinear and copropagating Gaussian la
beams coming to a common focus atZfocus. The waist of the laser
beam of frequencyv1 (v2) is w0,1 (w0,2).
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the slowly varying beat wave, via thev3B force, rather than
direct interaction with the electric field of the laser bea
@11,13#.

The equation of motion for the phase differencec22c1
is given by

d~c22c1!

dz
5~k22k1!~bph

212bz
21!1

2b'•r

bz
~z2Zfocus!

3S 1

ZR2w2
22

1

ZR1w1
2D , ~48!

wherebph, the beat wave phase velocity normalized toc, is
given by

bph
21512

12~12 ẑ2
2!r 2/w2

2

~k22k1!ZR2~11 ẑ2
2!

1
12~12 ẑ1

2!r 2/w1
2

~k22k1!ZR1~11 ẑ1
2!

,

~49!

ẑj5(z2Zfocus)/ZR j , Zfocus is the ~common! focal point of
the two laser beams,b5(b' ,bz)5v/c is the particle veloc-
ity normalized toc, andr is the radius vector to the particle

In Ref. @13#, several limits of the interaction of particle
with the beat wave generated by two Gaussian laser be
were examined. If, for simplicity, one considers the case o
synchronous interaction with two laser beams, the chang
energyW(G)[mc2*dz(dg/dz) may be written as

W~G!5pg21~k22k1!ZRa0,1
~G!a0,2

~G! sincsyn, ~50!

where, in practical units, for a Gaussian beam

a0 j
~G!5FPj ~TW!

0.0432 G1/2 l j

w0 j
. ~51!

In Eq. ~51!, Pj ~TW! is the laser beam power in TW. Equa
tion ~50! is appropriate for the case where the Rayle
ranges of the two beams coincide, i.e.,ZR15ZR2[ZR . The
case of equal Rayleigh ranges is of interest since it ens
that the Guoy phase shifts of the two laser beams canc
the v3B force. Moreover, it follows from Eq.~49! that the
equality of the Rayleigh ranges implies that the on-a
phase velocity of the beat wave is constant and equal tc.
Thus it is plausible to assume that the particle maintain
constant phasecsyn[c22c1 relative to the beat wave pro
vided its transverse excursions are negligible.~In the simu-
lation results to be presented later, these assumptions ar
made.!

B. VBWA with Bessel beams

Figure 8 depicts a possible VBWA arrangement empl
ing a compound axicon focusing element that is configu
to permit an overlap region for the two laser beams. T
incident laser beams are assumed to be annular, with
lower frequency beam surrounding the higher freque
beam. To generalize Eq.~40! to annular beams, it is useful t
define

zmin j5
r min j

tanq j
1~Rj2r min j !tana j1R11d j ,1

tana1 , ~52!
s

ms
a
in

es
in

s

a
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-
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zmaxj5
r maxj

tanq j
1~Rj2r maxj !tana j1R11d j ,1

tana1 , ~53!

as the minimum and maximum axial locations—within ge
metrical optics—of thej th annular beam, respectively. He
r max j (r min j) is the outer~inner! radius of thej th beam in the
incidence plane,R5R11R2 is the radius of the axicon base
the anglesq j anda j are indicated in Fig. 8, andd j ,1 is the
Kronecker delta. Subtracting Eq.~52! from Eq. ~53!, the
axial extent of thej th beam in Fig. 8 is given by

Za j5~r max j2r min j !~cotq j2tana j !. ~54!

The equation of motion for the evolution of the phase diffe
ence in the Bessel beam beat wave is given by

d~c22c1!

dz
5~k22k1!S bph

212bz
211

dr2

dz2D , ~55!

where, making use of Eq.~44!, the normalized Bessel beam
beat wave phase velocity is given by

bph
21512

~n21!2

2

v2 tan2 a22v1 tan2 a1

v22v1
2

r 2

2z2 .

~56!

For comparison with Eq.~50!, bph51 in Eq. ~55! ~for r
50) provided

tana1

tana2
5S v2

v1
D 1/2

, ~57!

or, making use of Eq.~39! for small angles,

q1

q2
'S v2

v1
D 1/2

. ~58!

The choice in Eq.~57! ensures that the Guoy phase shifts
the two laser beams cancel in thev3B force. Thus, for a
synchronous interaction withcsyn[c22c15const, the
change in energy for a Bessel beam driven VBWA is

W~B!5pg21~k22k1!~zmax
2 2zmin

2 !F sincsyn, ~59!

where

FIG. 8. Vacuum beat wave accelerator configuration driven
two collinear and copropagating Bessel laser beams formed
compound axicon. Incident beams are annular, uniformly illumin
ing regionsr min 1,r,rmax1 with laser beam 1 andr min 2,r,rmax2

with laser beam 2.
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F5a0,1
~B!a0,2

~B!Ak2k1~n21!2tana1J0@k1r ~n21!tana1#

3tana2J0@k2r ~n21!tana2#, ~60!

a0 j
~B!5FPj ~TW!

0.0864 G1/2 l j

Dr j
, ~61!

and

Dr j5~r max j
2 2r min j

2 !1/2. ~62!

In writing Eq. ~59!, it is assumed that the axicon angles a
incident beam dimensions are such that the two Be
beams overlap on thez axis in the rangezmin,z,zmax. This
will be the case for the simulations in the next section.

C. Comparison of Gaussian and Bessel beam driven VBWA

The VBWA driven by the two laser beam profiles may
compared by evaluating the ratioW(B)/W(G). Making use of
Eqs.~50! and ~59!, one finds, for smalla j ,

W~B!

W~G! 5~n21!2tana1 tana2

~zmax
2 2zmin

2 !

Dr 1Dr 2
, ~63!

provided the productP1P2 is the same for the Gaussian an
Bessel beams. For small angles, making use of Eqs.~52!,
~53!, and~57!, one finds the remarkable result

W~B!/W~G!51. ~64!

Thus, within the limits of the approximations made, a Gau
ian beam driven VBWA is as efficient as a Bessel be
driven VBWA. Physically, the reason for this is that a long
interaction length in the Bessel beam case is obtained a
expense of reduced field amplitude. However, in the follo
ing section it will be shown, by full-scale numerical simul
tions that allow transverse excursions of the particles as
as the full complement of the electromagnetic fields, t
W(G)/W(B);2 – 3 in a particular example.

VI. NUMERICAL RESULTS

Based on the analytical model developed in Sec. V
appears that a VBWA driven by Bessel beams has the s
energy gain as that driven by Gaussian beams. As note
the preceding section, the analytical model used for
comparison is highly simplified. One can always choose
rameters such that the Guoy phase shifts of the two la
beams cancel out in thev3B force on a particle moving
along thez axis, allowing synchronous interaction. Howeve
the model neglects transverse displacements of
particles—that can lead to detuning—and retains only
second-order,v3B, driving term. In this section, numerica
simulations of the two cases are presented, avoiding the
lytical simplifications. The numerical method makes use o
leapfrog integrator to push particles in the prescribed fie
of the laser beams. The fully relativistic Lorentz equations
motion, includingall the field components, are solved on t
fast temporal and spatial scales, with no averaging. The
ticle equations of motion are integrated in the speed-of-li
coordinate system, with independent variablesz5ct2z and
t5t. Boris’ rotation is used for accurate finite differencin
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of the v3B force @49#. For the Gaussian case, the co
makes use of Eqs.~45! and ~46! for each of the prescribed
laser beams. For the Bessel beam case, the laser field
obtained from Eq.~44! in the region defined by Eq.~54!.

The simulation results are for two laser beams, one a
mm and the other frequency-doubled to 1/2mm. A 4.5-MeV
beam ~represented by 4000 macroparticles! is injected up-
stream with finite emittance, coming to a focus in the int
action region. Two cases are compared:A, a Gaussian
beam driven VBWA, andB, a Bessel beam driven VBWA
To compare similar cases, the power in the laser beams is
same for the two cases. This implies that the field stren
~i.e., the vector potential! in caseB is small compared to tha
in caseA.

A. Gaussian beams

Table I lists the parameters for the Gaussian beam dri
VBWA. In this case, the particle beam is arranged to form
waist ~minimum spot size! that is equal to that of the 1-mm
laser beam. The~unperturbed! particle and two laser beam
have a common focal point, i.e., all three form a waist at
samez location. Figure 9~a! shows the peak energy and Fi
9~b! shows the centroid radius as functions of the normaliz
axial distancez/ZR1 , whereZR1 is the ~common! Rayleigh
range of the two laser beams. The particles start out 40 R
leigh ranges upstream of the laser beam foci and are
lowed to 40 Rayleigh ranges downstream, i.e., the interac
region is in the vicinity ofz/ZR1540 in Fig. 9. The peak
energy of the beam after the interaction is observed to be
MeV. To put the transverse displacement in perspective,
divergence angle in Fig. 9~b! is relatively small,;7 mrad.
Figures 9~c! and 9~d! are the radial and axial phase-spa
plots at the end of the run (ct50.4 cm). The phase-spac
plots show a relatively large spread in the particle distrib
tion, indicating a lack of strong trapping in the VBWA, a
though it should be noted that at this time (ct50.4 cm) the
laser beams have completely diffracted away. Figures 9~e!
and 9~f ! show thex-y and thez-vx /c phase-space plots
respectively, atct50.3 cm. Thex-y phase-space plot show
a nearly azimuthally symmetric distribution of particles th
is partially hollowed out due to scattering. Figure 9~f ! shows
a beam of particles emerging from the interaction and pro
gating towards the left with a relatively narrow distributio
lying inside a cone with half-angle;0.1 rad.

TABLE I. Parameters for Gaussian beam driven vacuum b
wave accelerator.

Injection energy 4.5 MeV
Normalized emittance 1.2p mm mrad
Particle beam waist 4mm
Wavelengthl1 1 mm
Laser beam waistw0,1 4 mm
Rayleigh rangeZR1 50 mm
Power~1-mm beam! P1 1.5 TW
Power~1/2-mm beam! P2 3 TW
Normalized vector potentiala0,1 1.48
Vector potential ratioa0,2/a0,1 1
Waist ratiow0,2/w0,1 1/&
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FIG. 9. Simulation results for VBWA driven by Gaussian laser beams, employing initially converging 4.5-MeV finite-emittance p
beam. Particles are injected atz50,40 Rayleigh ranges~40 ZR1) upstream of the~common! laser beam foci. Plots of~a! peak energy,~b!
centroid radius are shown as functions ofz/ZR1 , while ~c! and~d! show radial and axial phase-space plots at end of run,ct50.4. Thex-y
andz-vx /c plots, ~e! and ~f !, respectively, are atct50.3.
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B. Bessel beams

Table II lists the parameters for the Bessel beam dri
VBWA. The axicon material is taken to be ZnSe, with t
refractive indexn52.6 assumed to be the same for both t
1- and the1

2-mm light. While not necessarily optimal, th
relatively large refractive index allows the use of a thin a
con for a given configuration. The length of the overlap
gion is 2.58 mm; as a result of this long interaction leng
the normalized vector potential in Table II is much less th
that for the Gaussian beam case in Table I. The particles
n

e

-
-
,
n
art

out well before the axicon beams form a line focus and
~unperturbed! particle beam is arranged to have a waist o
mm halfway along the line focus. For comparison, the ra
of the central lobes of the Bessel beams measure 7.751
5.481mm, respectively, for the 1- and 1/2-mm light. Figure
10~a! shows the peak energy while Fig. 10~b! shows the
centroid radius as functions of the normalized axial dista
z/ZR1 , where, for ease of comparison,ZR1 has the same
numerical value as in Figs. 9~a! and 9~b!. The region around
the axis where the annular beams form a focus is w
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defined with relatively sharp boundaries. As a conseque
the peak energy in Fig. 10~a! rises rapidly as the electro
beam enters the overlap region. The peak energy of the b
after the interaction is about 7 MeV. There is a small drop
energy forz/ZR1.350; this is an artifact of radial walk-of
of some of the high-energy particles. Comparing Figs. 9~a!
and 10~a!, it may be concluded that the final energy for t
Bessel beam driven VBWA is a factor 2–3 less than
Gaussian beam case. Figures 10~c! and 10~d! display the
radial and axial phase spaces at the end of the runct
52 cm). As with the Gaussian case, the phase-space
show a relatively large spread in the particle distributi
since the laser beams have long diffracted away. Fina
Figs. 10~e! and 10~f ! show thex-y and thez-vx /c phase-
space plots, respectively, atct51.5 cm. Thex-y phase-
space plot shows a nearly uniform distribution of particl
Note that, unlike the Gaussian-driven VBWA case in F
9~e!, the distribution is not hollowed out. Figure 10~f ! shows
a beam of particles emerging from the interaction and pro
gating towards the left with a relatively narrow distributio
lying inside a cone with half-angle;0.1 rad.

VII. DISCUSSION AND CONCLUSIONS

Laser-driven accelerators are typically characterized
very large acceleration gradients. Diffraction of laser bea
however, imposes a serious limitation on many of the
schemes by restricting the interaction length. Additiona
on passing through a focal region a beam undergoes a G
phase shift that detunes the wave-particle interaction.

TABLE II. Parameters for Bessel beam driven vacuum b
wave accelerator.

Injection energy 4.5 MeV
Normalized emittance 1.2p mm mrad
Particle beam waist 4mm
Wavelengthl1 1 mm
Power~1-mm beam! P1 1.5 TW
Power~1/2-mm beam! P2 3 TW
Normalized vector potentiala0,1 0.01
Vector potential ratioa0,2/a0,1 1
a25a2 /& 1.25°
q25q1 /& 2°
r min,25r min,1/& 0.405 mm
r max,25r max,1/& 0.495 mm
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scale length for the diffraction and phase shift of a beam
electromagnetic radiation depends on the transverse pr
of the beam. Ordinarily, laser beams are formed by conv
tional optical elements and have a Gaussian transverse
file. Other optical elements, such as axicons and zone pl
~holograms!, form beams whose transverse profile is a Bes
function. Based on Huygens’ principle, expressions for
electromagnetic field of a Bessel beam that is formed by
axicon illuminated by an annular laser beam have been
tained. These expressions are used to derive and compar
energy gain with that for a Gaussian beam driven vacu
beat wave accelerator. In the VBWA, the Guoy phase of
two laser beams can be canceled out by proper choic
parameters, leading to a beat wave with a phase velo
equal toc. An analytical model—neglecting detuning, tran
verse displacements of the particles, and including thv
3B interaction only—predicts equal energy gains for t
two configurations. Full-scale, finite emittance particle sim
lations show that in practice the energy gain for the Bes
beam driven vacuum beat wave accelerator is a factor
less than that for a Gaussian beam driven configuration.
particle beam emerging from the interaction is, in both cas
nearly azimuthally symmetric, with a relatively small ang
lar divergence. The difference between the analytical pre
tion and the simulation results for the energy gain can be
to several reasons, e.g., neglect of transverse particle
placement in the analysis. Figures 9~b! and 10~b! show that
high-energy particles can wander off thez axis to distances
beyond the radial scale length of the laser beam, where
Gaussian and the Bessel beam profiles are quite differ
Radial displacements also affect the wave-particle phase
lationship that can, over an extended interaction distan
lead to significant differences between the energy gains.

It is appropriate to conclude this paper by considering
relative merits of Bessel and Gaussian beams in other la
driven acceleration mechanisms@35#. This can be accom-
plished using scaling arguments and assuming that ph
synchronism can be maintained by some means. The det
comparison between analytical calculations and full-sc
simulations of the VBWA contained in this paper implie
that scaling relationships based on general arguments su
to within factors of order unity.

The VBWA may be grouped with the laser wakefield a
celerator ~LWFA! and the plasma beat wave accelera
~PBWA! since they rely on ponderomotive force and t
interaction is quadratic in the field strength@5#. The cyclo-
tron autoresonance accelerator~CARA! @50–54#, inverse
free-electron laser~IFEL! @20#, and inverse Cˇ erenkov accel-

t

TABLE III. Comparison of Bessel and Gaussian laser beams for acceleration.

Acceleration
mechanism

Ratio of
accel. length

L (B)/L (G)

Ratio of
accel. gradient

E(B)/E(G)

Ratio of
final energy
W(B)/W(G)

IFEL N(w(B)/w(G))2 (w(G)/w(B))(P(B)/NP(G))1/2 (w(B)/w(G))(NP(B)/P(G))1/2

CARA N(w(B)/w(G))2 (w(G)/w(B))(P(B)/NP(G))1/2 (w(B)/w(G))(NP(B)/P(G))1/2

ICA N(w(B)/w(G))2 (w(G)/w(B))2(P(B)/NP(G))1/2 (NP(B)/P(G))1/2

VBWA N(w(B)/w(G))2 (w(G)/w(B))2(P(B)/NP(G)) P(B)/P(G)

LWFA N(w(B)/w(G))2 (w(G)/w(B))2(P(B)/NP(G)) P(B)/P(G)

PBWA N(w(B)/w(G))2 (w(G)/w(B))2(P(B)/NP(G)) P(B)/P(G)

VA (w(B)/w(G))2 (w(G)/w(B))2(P(B)/NP(G))1/2 (P(B)/NP(G))1/2
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FIG. 10. Simulation results for VBWA driven by Bessel laser beams—formed by a compound axicon optical element—em
initially converging 4.5-MeV finite-emittance particle beam. Particles are injected well upstream of the~common! overlap region of the
axicon beams. Plots of~a! peak energy,~b! centroid radius are shown as functions ofz/ZR1 , while ~c! and ~d! show radial and axial
phase-space plots at end of run,ct52. Thex-y andz-vx /c plots, ~e! and ~f !, respectively, are atct51.5.
rty
m
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ia
erator~ICA! @15# mechanisms have in common the prope
of being linear in the laser-field strength. Finally, the vacuu
accelerator~VA ! @7,12,15#, driven by a single laser beam, i
exceptional since the acceleration distance is limited
phase slippage. In all the examples, the change in energ
written asW5EL, whereE is the acceleration gradient an
L is the acceleration distance. The outline of the scaling
gument for the ICA is as follows. In the ICA, the change
electron energy is the result of interaction with the ax
component of the laser electric field«z and can therefore be
written as
y
is

r-

l

W}«zL. ~65!

From Eqs. ~1!–~3!, for a Gaussian beam «z

}@P(G)#1/2/@w(G)#2, whereP(G) is the beam power,L is on
the order of a Rayleigh range,L'p@w(G)#2/l, and w(G)

replaces the spot sizew0 for notational clarity. Hence,

W~G!}@P~G!#1/2. ~66!

On the other hand, for a Bessel beam withN lobes «z
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}@P(B)/N#1/2/@w(B)#2, whereP(B) is the total beam power,L
5Np@w(B)#2/l and w(B) is the radius of thecentral lobe.
Hence,

W~B!}@NP~B!#1/2. ~67!

Combining Eqs.~66! and ~67!, it follows that

W~B!/W~G!;@NP~B!/P~G!#1/2. ~68!

For equal powers, this ratio scales asN1/2. Thus for the ICA,
it is advantageous to employ Bessel beams as compare
Gaussian beams, the more so asN increases. Table III com
pares the Gaussian and Bessel beams for the various m
nisms, listing the ratio of acceleration lengths, accelera
gradients, and final energies. The following remarks sho
be noted. First, in the high-intensity limit a0
[ueu«0 /(mcv)@1 the scaling of the LWFA changes to fa
vor the Bessel beam since the wakefield amplitude}a0

2/(1
-2

,

P.
ne

C.

ns

s.

. A

P

t.

r,

ys

.

to

ha-
n
ld

1a0
2)1/2 then becomes proportional to thefirst power of the

laser field@5#. Second, for brevity the entries for the VBWA
and the PBWA—involving two laser beams—assume t
the laser power in each beam is the same. Finally, in the
the acceleration distance is limited by phase slippage in
pendent of the beam profile.
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